MetaMultiheadAttention
torchmeta.modules.MetaMultiheadAttention(*args, **kwargs)
Notes
See: torch.nn.MultiheadAttention
MetaBatchNorm1d
torchmeta.modules.MetaBatchNorm1d(num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)
Notes
See: torch.nn.BatchNorm1d
MetaBatchNorm2d
torchmeta.modules.MetaBatchNorm2d(num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)
Notes
See: torch.nn.BatchNorm2d
MetaBatchNorm3d
torchmeta.modules.MetaBatchNorm3d(num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)
Notes
See: torch.nn.BatchNorm3d
MetaSequential
torchmeta.modules.MetaSequential(*args:Any)
Notes
See: torch.nn.Sequential
MetaConv1d
torchmeta.modules.MetaConv1d(in_channels:int, out_channels:int,
kernel_size:Union[int, Tuple[int]], stride:Union[int, Tuple[int]]=1,
padding:Union[int, Tuple[int]]=0, dilation:Union[int, Tuple[int]]=1,
groups:int=1, bias:bool=True, padding_mode:str='zeros')
Notes
See: torch.nn.Conv1d
MetaConv2d
torchmeta.modules.MetaConv2d(in_channels:int, out_channels:int,
kernel_size:Union[int, Tuple[int, int]], stride:Union[int, Tuple[int,
int]]=1, padding:Union[int, Tuple[int, int]]=0, dilation:Union[int,
Tuple[int, int]]=1, groups:int=1, bias:bool=True,
padding_mode:str='zeros')
Notes
See: torch.nn.Conv2d
MetaConv3d
torchmeta.modules.MetaConv3d(in_channels:int, out_channels:int,
kernel_size:Union[int, Tuple[int, int, int]], stride:Union[int, Tuple[int,
int, int]]=1, padding:Union[int, Tuple[int, int, int]]=0,
dilation:Union[int, Tuple[int, int, int]]=1, groups:int=1, bias:bool=True,
padding_mode:str='zeros')
Notes
See: torch.nn.Conv3d
MetaLinear
torchmeta.modules.MetaLinear(in_features:int, out_features:int,
bias:bool=True) -> None
Notes
See: torch.nn.Linear
MetaBilinear
torchmeta.modules.MetaBilinear(in1_features:int, in2_features:int,
out_features:int, bias:bool=True) -> None
Notes
See: torch.nn.Bilinear
MetaModule
Base class for PyTorch meta-learning modules. These modules accept an additional argument params in their forward method.
torchmeta.modules.MetaModule()
Notes
Objects inherited from MetaModule are fully compatible with PyTorch modules from torch.nn.Module. The argument params is a dictionary of tensors, with full support of the computation graph (for differentiation).
MetaLayerNorm
torchmeta.modules.MetaLayerNorm(normalized_shape:Union[int, List[int],
torch.Size], eps:float=1e-05, elementwise_affine:bool=True) -> None
Notes
See: torch.nn.LayerNorm
DataParallel
torchmeta.modules.DataParallel(module, device_ids=None, output_device=None,
dim=0)
Notes
See: torch.nn.Parallel
MetaEmbedding
torchmeta.modules.MetaEmbedding(num_embeddings:int, embedding_dim:int,
padding_idx:Union[int, NoneType]=None, max_norm:Union[float,
NoneType]=None, norm_type:float=2.0, scale_grad_by_freq:bool=False,
sparse:bool=False, _weight:Union[torch.Tensor, NoneType]=None) -> None
Notes
See: torch.nn.Embedding
MetaEmbeddingBag
torchmeta.modules.MetaEmbeddingBag(num_embeddings:int, embedding_dim:int,
max_norm:Union[float, NoneType]=None, norm_type:float=2.0,
scale_grad_by_freq:bool=False, mode:str='mean', sparse:bool=False,
_weight:Union[torch.Tensor, NoneType]=None,
include_last_offset:bool=False) -> None
Notes
See: torch.nn.EmbeddingBag